Unsupervised model compression for multilayer bootstrap networks

نویسنده

  • Xiao-Lei Zhang
چکیده

Recently, multilayer bootstrap network (MBN) has demonstrated promising performance in unsupervised dimensionality reduction. It can learn compact representations in standard data sets, i.e. MNIST and RCV1. However, as a bootstrap method, the prediction complexity of MBN is high. In this paper, we propose an unsupervised model compression framework for this general problem of unsupervised bootstrap methods. The framework compresses a large unsupervised bootstrap model into a small model by taking the bootstrap model and its application together as a black box and learning a mapping function from the input of the bootstrap model to the output of the application by a supervised learner. To specialize the framework, we propose a new technique, named compressive MBN. It takes MBN as the unsupervised bootstrap model and deep neural network (DNN) as the supervised learner. Our initial result on MNIST showed that compressive MBN not only maintains the high prediction accuracy of MBN but also is over thousands of times faster than MBN at the prediction stage. Our result suggests that the new technique integrates the effectiveness of MBN on unsupervised learning and the effectiveness and efficiency of DNN on supervised learning together for the effectiveness and efficiency of compressive MBN on unsupervised learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilayer bootstrap network for unsupervised speaker recognition

We apply multilayer bootstrap network (MBN), a recent proposed unsupervised learning method, to unsupervised speaker recognition. The proposed method first extracts supervectors from an unsupervised universal background model, then reduces the dimension of the high-dimensional supervectors by multilayer bootstrap network, and finally conducts unsupervised speaker recognition by clustering the l...

متن کامل

Multilayer bootstrap networks.

Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by o...

متن کامل

Image compression using a multilayer neural network

A property of neural networks is their ability to construct feature detectors as a result of supervised or unsupervised training. We demonstrate that a class of neural networks which produces topographic mappings [1] may be used to data compress SAR images. In Section II we summarise Kohonen's network learning algorithm, and we present an improved version of the algorithm in Section III. In Sec...

متن کامل

Distributed ARTMAP: a neural network for fast distributed supervised learning

Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, AR...

متن کامل

Image Segmentation Using a RBF Approach of Neural Network

Radial Basis function Neural Networks forms a class of neural networks which is much more advantageous then other methods of neural networks such as faster learning, easy networks & structures & better approximations & classifications. The system consist of a multilayer perceptron (MLP)-like network that performs image segmentation by RBF technique of the input image using labels automatically ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06452  شماره 

صفحات  -

تاریخ انتشار 2015